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Abstract—A solution is presented to the problem of esti-
mating the structure and motion of a moving object seen
from a moving camera. A nonlinear observer is proposed,
which asymptotically identifies the structure and motion of the
moving object, when the camera motion is persistently exciting.
The object is assumed to be moving with constant velocities.
The proposed method makes no assumptions on the minimum
number of views or point correspondences as required by the
existing approaches.

I. INTRODUCTION

The problem of recovering the structure of a static scene
using a moving camera, called ‘structure from motion
(SfM)’, is well understood. A number of solutions to the
SfM problem are given in the form of batch methods [1]–
[7] as well as online methods [8]–[15]. The solution to the
SfM problem (e.g. see [12], [15]) can be used to self-localize
a camera with respect to its environment. Triangulation is
feasible if a stationary point in the scene can be viewed from
two different camera locations (i.e. the scene is static). Since
SfM techniques rely on triangulation, they cannot be used
to recover the structure and motion of moving objects [16].
A need arises to answer the question: Given observations of
point correspondences in every image of a video stream with
known camera motion, is it possible to recover the Euclidean
structure and motion (i.e. linear and angular velocities)
of independently moving objects observed by the moving
camera?
The problem stated above is referred to as "structure and

motion from motion (SaMfM)" in this paper. In practice,
the motivation to solve the SaMfM problem comes from
scenarios such as to determine the range and speed of
cars moving on a highway as observed from an airborne
helicopter. In another example, consider an object-grabbing
robotic arm, equipped with a hand-held camera, grabbing
randomly placed objects moving on a conveyer belt. Esti-
mation of the range and velocity of a lead vehicle using
a camera mounted on a follower would help in formation
control of a convoy of unmanned ground vehicles (UGVs).
Camera velocities for these applications can be measured
using sensors such as a global positioning system (GPS) or
an inertial measurement unit (IMU).
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Solutions exist in literature for the specific cases of the
SaMfM problem where constraints are applied to the trajec-
tories and velocities of the moving object. The pioneering
work in [16] referred to the SaMfM problem as "trajectory
triangulation" and provided a solution where at least five
views are required if the motion of the object is constrained
to a straight line and at least nine views are required if the ob-
ject is moving with conic trajectories. However, convergence
of the method is not guaranteed. In [17], the structure and
motion of the objects moving with linear or conic trajectories
are recovered from tangent projections, provided at least
nine views are available and the motion of the camera is
known. In [18], the SaMfM problem is solved with constant
velocities, assuming an approximate orthographic projection
camera model. In [19], a stereo camera is used to provide a
solution to the SaMfM problem with at least four views. In
[20], a method is developed based on Homography and the
SaMfM problem is solved using five point correspondences
in three views. The method in [20] does not allow moving
points to be on different motion planes.
In this paper, a solution to a specific case of the SaMfM

problem is presented where the objects are moving inde-
pendently along straight lines in an arbitrary direction. The
structure and motion for each object in the scene can be
recovered independently using the camera velocities and the
feature point data obtained from an image sequence. The
proposed method has several advantages over the existing
methods. There are no requirements of minimum number
of point correspondences or number of views. Another
advantage is that the nonlinear observer processes the data
in every image as it arrives, and thus, can perform real-time
computation of the structure and motion of a moving object.
The batch methods collect data from multiple images and
then process it. Hence, processing time for the proposed
observer is less than that of the batch methods. A stability
analysis of the proposed observer is presented which guaran-
tees convergence of the observer, provided an observability
condition based on the persistency of excitation (PE) of the
camera motion is satisfied. Convergence of batch methods is
not always guaranteed.

II. EUCLIDEAN TO IMAGE SPACE MAPPING
Consider a scenario depicted in Fig. 1 where a moving

camera views moving point objects. In Fig. 1, an inertial
reference frame is denoted by F∗1. After the initial time, a
1w.l.o.g. F∗ can be attached to the camera at the location corresponding

to an initial point in time t0 where the object is in the camera field of view
(FOV) and F∗ is identical to Fc(t0).
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Fig. 1. Objects as seen from the camera and coordinate relationships.

reference frame Fc attached to a pinhole camera undergoes
some rotation R̄(t) ∈ SO(3) and translation x̄f (t) ∈ R3
away from F∗.
The Euclidean coordinates m̄j(t) ∈ R3 (where j =

{1, 2, ...., n} denotes a point number) of points observed by a
camera expressed in the camera frame Fc and the respective
normalized Euclidean coordinates mj(t) ∈ R3 are defined
as

m̄j(t) =
£
x1j(t), x2j(t), x3j(t)

¤T
, (1)

mj(t) =

∙
x1j(t)

x3j(t)
,

x2j(t)

x3j(t)
, 1

¸T
. (2)

Consider a closed and bounded set Y ⊂ R3. To facilitate the
subsequent development, the state vector yj(t) = [y1j(t),
y2j(t), y3j(t)]T ∈ Y is constructed from (2) as

yj =

∙
x1j
x3j

,
x2j
x3j

,
1

x3j

¸T
. (3)

Using projective geometry, the normalized Euclidean coor-
dinates mj(t) can be related to the pixel coordinates in the
image space as

qj = Amj (4)

where qj(t) =
£
uj(t) vj(t) 1

¤T is a vector of the
image-space feature point coordinates uj(t), vj(t) ∈ R
defined on the closed and bounded set I ⊂ R3, and A ∈
R3×3 is a constant, known, invertible camera calibration
matrix [21]. Since A is known, the expression in (4) can
be used to recover mj(t), which can be used to partially
reconstruct the state yj(t) so that the first two components
of yj(t) can be determined.
Assumption 1: The relative Euclidean distance x3j(t)

between the camera and the feature points observed on the
target is upper and lower bounded by some known positive
constants (i.e., the object remains within some finite distance
away from the camera). Therefore, the definition in (3) can
be used to assume that

ȳ3 ≥ y3j(t) ≥ y3 (5)

where ȳ3, y3 ∈ R denote known positive bounding constants.
Likewise, since the image coordinates are constrained (i.e.,

the target remains in the camera field of view), the rela-
tionships in (2), (3), and (4) along with the fact that A is
invertible can be used to conclude that

ȳ1 ≥ |y1j(t)| ≥ y1 ȳ2 ≥ |y2j(t)| ≥ y2

where ȳ1, ȳ2, y1, y2 ∈ R denote known positive bounding
constants.
Assumption 2: The motion of the camera is assumed to be

smooth such that the acceleration is bounded by a constant.
Thus, yj(t) belongs to class C2, which also implies that the
second derivative of yj(t) is bounded by a constant.
For the remainder of this paper, the feature point subscript

j is omitted to streamline the notation.

III. CAMERA MOTION MODEL

Consider the moving camera viewing a moving point q.
As seen from Fig. 1, the point q can be expressed in the
coordinate system Fc as

m̄ = x̄f + R̄xoq (6)

where xoq is a vector from the origin of coordinate system
F∗ to the point q expressed in the coordinate system F∗.
Differentiating (6), the relative motion of q as observed in the
camera coordinate system can be expressed by the following
kinematics [21], [22]

·
m̄ = [ω]×m̄− vr (7)

where m̄(t) is defined in (1), [ω]× ∈ R3×3 denotes a skew
symmetric matrix formed from the angular velocity vector
of the camera ω(t) =

£
ω1 ω2 ω3

¤T ∈ W , and vr(t)
represents the relative velocity of the camera with respect to
the moving point, defined as

vr = vc − vp. (8)

In (8), vc(t) denotes the camera velocity in the inertial
reference frame given by vc(t) =

£
vcx vcy vcz

¤T ∈ Vc
and vp(t) denotes the velocity of the point in the camera
reference frame given by vp(t) =

£
vpx vpy vpz

¤T ∈
Vp. The sets W, Vc and Vp are closed and bounded sets
such that W ⊂ R3,Vc ⊂ R3 and Vp ⊂ R3.
Assumption 3: For the subsequent development of an

observer, the point velocities are assumed to be constant.

IV. STRUCTURE AND MOTION ESTIMATION

A. Structure and Motion from Motion (SaMfM) Objective

The objective of SaMfM is to recover the structure (i.e.
Euclidean coordinates) and motion (i.e. Euclidean linear and
angular velocities) of moving objects observed by a moving
camera, assuming that all the camera velocities are known.
The object can be tracked as a single point or a collection
of feature points, where the range (i.e., 1

x3(t)
) and motion of

each point should be estimated.
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B. State Dynamics Formulation

The states defined in (3) contain unknown structure in-
formation of the object. To facilitate the observer design,
states are defined in this section to incorporate unknown
structure and velocity information. Specifically, an auxiliary
state vector p(t) =

£
p1(t) p2(t) p3(t)

¤T ∈ R3 is
defined as

p ,
£
vpxy3(t) vpyy3(t) vpzy3(t)

¤T (9)

which incorporates the unknown object velocity information.
To recover the 3D structure, the state y3(t) should be
estimated since y3(t) contains range information. Since, the
states y1(t), y2(t) can be measured from the images, the
estimated state y3(t) can be used to scale y1(t) and y2(t),
and thus m̄(t), i.e. the 3D structure can be recovered. To
recover the velocity information, the state p(t) must be esti-
mated. Once the states y3(t) and p(t) are estimated, velocity
information can be recovered by scaling the estimated p(t)
by the estimated y3(t). Using (3) and (7), the dynamics of
the state vector y(t) are expressed as

ẏ1 = Ω1 + (−vcx + y1vcz)y3 + p1 − y1p3,

ẏ2 = Ω2 + (−vcy + y2vcz)y3 + p2 − y2p3,

ẏ3 = −vczy23 + (y2ω1 − y1ω2)y3 + vpzy
2
3 (10)

where Ω1(t) ∈ R and Ω2(t) ∈ R are defined as

Ω1(t) , −ω2 + y2ω3 + y1y2ω1 − y21ω2,

Ω2(t) , ω1 − y1ω3 − y1y2ω2 + y22ω1.

Differentiating (9) and using (10) along with Assumption
3, the dynamics of the state p(t) can be represented by
following set of differential equations

ṗ1 = −vczp1y3 + (y2ω1 − y1ω2)p1 + p3p1,

ṗ2 = −vczp2y3 + (y2ω1 − y1ω2)p2 + p3p2,

ṗ3 = −vczp3y3 + (y2ω1 − y1ω2)p3 + p23. (11)

By defining the vector z(t) ∈ R2 and vector θ(t) ∈ R4 as

z(t) ,
£
y1 y2

¤T
,

θ(t) ,
£
y3 p1 p2 p3

¤T
the state dynamics given by (10) and (11) can be expressed
as

ż = Ω(z, u) + J(z, u)θ,

θ̇ = g(z, θ, u) (12)

where Ω(t) =
£
Ω1(t) Ω2(t)

¤T , u(t) =£
vc(t) ω(t)

¤T and the functions J(z, u) ∈ R2×4
and g(z, θ, u) ∈ R4 are given by

J =

∙
(−vcx + y1vcz) 1 0 −y1
(−vcy + y2vcz) 0 1 −y2

¸
, (13)

and

g =

⎡⎢⎢⎣
vczy

2
3 + (y2ω1 − y1ω2)y3 − p3y3

vczp1y3 + (y2ω1 − y1ω2)p1 − p3p1
vczp2y3 + (y2ω1 − y1ω2)p2 − p3p2
vczp3y3 + (y2ω1 − y1ω2)p3 − p23

⎤⎥⎥⎦ . (14)

A nonlinear observer is designed to estimate the parameters
θ(t) which contain unknown depth and unknown velocity
information of the moving object.
Assumption 4: The function g(z, θ, u) is locally Lipschitz

with respect to the second argument.
Assumption 5: The signal vc(t) is of class C2, hence,

·
vc(t)

and ··
vc(t) ∈ L∞

Assumption 6: There exists a positive constant γ ∈ R and
small positive constant τ ∈ R such that the inequality

t+τZ
t

JT (β)J(β)dβ ≥ γI

is satisfied for all t ≥ 0. This is a persistency of excitation
condition for the camera motion.
Remark 1: Based on Assumptions 1-3 and 5, vc(t) and

vp(t) belong to class C2. Thus, the following inequalities
can be obtained

kθ(t)k ≤ θ̄,

°°°° ·θ(t)°°°° ≤ ξ̄3,

°°°°··θ(t)°°°° ≤ ξ̄4

where θ̄, ξ̄3, ξ̄4 ∈ R denote known bounding constants.
Remark 2: Using the fact that the camera and the point

velocities vc(t), ω(t), and vp(t) are bounded above, along
with Assumption 1, 2 and 5, an upper bound on J(z, u),
·
J(z, u),

··
J(z, u) can be established as

kJ(z, u)k ≤ ξ̄5,

°°°° ·J(z, u)°°°° ≤ ξ̄6,

°°°° ··J(z, u)°°°° ≤ ξ̄7

where ξ̄5, ξ̄6, ξ̄7 ∈ R denote known bounding constants.
Remark 3: Even though the rank of JT (z, u)J(z, u) can

be at most 2, the integration of JT (z, u)J(z, u) can achieve
full rank [11], [23], [24]. The PE condition in Assumption
6 requires the camera velocities to be persistently exciting,
which means that the camera should not be translating
parallel to the projected ray or camera must be translating in
all three directions simultaneously, i.e. vcx = vcy = vcz 6= 0.

C. State Estimator
To quantify the objective of estimating z(t) and θ(t), the

errors in estimation denoted by e(t) ∈ R2 and θ̃(t) ∈ R4 are
defined as

e , z − ẑ, θ̃ , θ − θ̂. (15)

To facilitate the stability analysis, the filtered error r(t) ∈ R2
is defined as

r , ·
e+ αe. (16)

where α ∈ R denote a positive constant. Based on the
structure of (12), a continuous nonlinear observer is designed
as
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·
ẑ = Ω(z, u) + J(z, u)θ̂ + η,
·
θ̂ = proj(θ̂, φ) (17)

where proj(·) is a smooth projection operator [25], [26] and
φ(z, θ̂, u, e) ∈ R4 is defined as

φ , g(z, θ̂, u) + ΓJT (η − αe) (18)

where Γ ∈ R4×4 is a gain matrix. In (17), ẑ(t) ∈ R2 denotes
the estimate of the measurable state z(t) given by ẑ(t) ,£
ŷ1(t) ŷ2(t)

¤T and θ̂(t) ∈ R4 denotes an estimate of
θ(t) given by θ̂(t) =

£
ŷ3(t) p̂1(t) p̂2(t) p̂3(t)

¤T . The
term η(t) ∈ R2 is defined as the generalized solution to

η̇ = (K + I2×2)r(t) + ρsgn(e(t))− α2e(τ)dτ (19)

where K, ρ ∈ R2×2 are diagonal gain matrices.
After utilizing the errors in (15) and the proposed estimator

in (17), the error dynamics can be expressed as
·
e = Jθ̃ − η,
·
θ̃ = g − ĝ − ΓJT (η − αe). (20)

Differentiating (16), the open-loop error is given by

·
r = J

·
θ̃ +

·
Jθ̃ − ·

p+ α
·
e,

= J
·
θ − J

·
θ̂ +

·
Jθ −

·
Jθ̂ − ·

η + α
·
e. (21)

The following upper bounds on θ̂(t) and
·
θ̂(t) can be estab-

lished °°°θ̂(t)°°° ≤ ζ1,

°°°°° ·θ̂(t)
°°°°° ≤ ζ2 + ζ3 krk (22)

where ζ1, ζ2 and ζ3 ∈ R are bounding constants. The
bound on θ̂(t) comes from the smooth projection operator
used in the estimator design (17). From the upper bounds
of θ(t) and θ̂(t), and using (15), an upper bound of θ̃(t)

can be determined. The bound on
·
θ̂(t) can be established by

substituting η(t) from (20) into
·
θ̂(t) and utilizing bounds on

θ̂(t), θ̃(t), J(t), z(t). Terms in (21) can be combined as
·
r = χ1 + χ2 −

·
η + α

·
e (23)

where the auxiliary terms χ1(t) and χ2(t) are defined as

χ1 , J
·
θ +

·
Jθ̃ + kJk ζ2,

χ2 , −J
·
θ̂ − kJk ζ2. (24)

The following bounds can be established for χ1(t),
·
χ1(t)

and χ2(t) based on Remarks 1-3

kχ1k ≤ ς1, kχ2k ≤ ς2 krk , (25)°°° ·χ1°°° ≤ ς3 + ς4 krk

where ςi ∈ R, i = (1, .., 4) are known positive constants.
The signals χ1(t) and χ2(t) are created to separate terms

bounded by constants and by state dependencies in (21). The
terms inside χ2(t) which are upper bounded by constants are
removed from χ2(t) and combined with χ1(t) as kJk ζ2.
This segregation of terms is helpful in the stability analysis.
Utilizing the robust term in (19) and the open-loop error
system (23), the closed-loop error system is expressed as

·
r = χ1 + χ2 − (K + I)r − ρsgn(e) + αr. (26)

D. Stability Analysis

The stability of the observer in (17) is analyzed by first
analyzing the stability of the

·
ẑ(t) dynamics. The presence

of θ̃(t) in the ·
e(t) error dynamics can be treated as a

bounded disturbance. Thus, a robust term η(t) is used to
crush the disturbances and to drive e(t) and ·

e(t) to zero.
Once, e(t) and ·

e(t) are driven to zero, the designed term
η(t) identifies the disturbance term J(z, u)θ̃(t), which can

be used to stabilize the
·
θ̃(t) dynamics. Thus, the stability

analysis of error e(t) is shown first and then the stability of

error θ̃(t) is analyzed. The
·
θ̃(t) error dynamics is a linear

differential equation with vanishing disturbances. Tools from
linear systems theory are used to achieve θ̃(t) ∈ L∞ and°°°θ̃(t)°°° → 0 as t → ∞, which is the ultimate goal of this
paper.
Theorem: The observer in (17) is asymptotically stable in

the sense

ke(t)k→ 0 as t→∞ and
°°°θ̃(t)°°°→ 0 as t→∞

provided Assumptions 1-6 and following sufficient condi-
tions are satisfied

ρ ≥ ς1 +
1

α
ς3, β ≥ ς4. (27)

Proof: The proof is given in two parts. First the stability of
·
e(t) is analyzed followed by the stability of

·
θ̃(t) dynamics.

1) Stability of ·e(t) dynamics: Consider a domain D ⊂ R5
containing ψ(t) = 0, where ψ(t) ∈ R5 is defined as

ψ(t) ,
£
rT eT

p
P (t)

¤T
. (28)

The auxiliary function P (t) ∈ R in (28) is defined as

P = ρ ke(0)k− eT (0)χ1(0)− L(t) + L(0)

where the signal L(t) ∈ R is generated as

L̇(t) = rT (τ)(χ1 − ρsgn(e(τ)))− β kek krk

and β ∈ R is chosen according to (27). It can be proven that
P (t) ≥ 0, in a similar manner as [27], [28] provided the
sufficient conditions in (27) are satisfied. Let Ve(y, t) : D ×
[0,∞) → R be a continuously differentiable non-negative
radially unbounded function defined as

Ve(y, t) ,
1

2
rT r +

1

2
eT e+ P (29)
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where K1 ∈ R2×2 is a diagonal matrix. After utilizing the
error derivatives from (16) and (23), the time derivative of
(29) is given by
·
V e = rTχ2−rT (K+I)r+αrT r+eT r−αeT e+β kek krk .

Using the fact,

kek krk ≤ 1
2
kek2 + 1

2
krk2 ,

and after utilizing the bound on χ2(t) in (25), the following
inequality can be obtained
·
V e ≤ ς2 krk2 − k krk2 + α krk2 + β + 1

2
krk2

+
β + 1

2
kek2 − α kek2 ,

·
V e ≤ −(k − ς2 − α− β + 1

2
) krk2 − (α− β + 1

2
) kek2

where k ∈ R , max{ki} ∀i = (1, 2), with ki being non-zero
entrees of the diagonal gain matrix K. Choosing α > β+1

2

and k > ς2 + α + β+1
2 , the following inequality can be

established
·
V e ≤ −(k − ς2 − α− β + 1

2
) krk2 . (30)

Using inequalities (29) and (30) it can be inferred that
Ve(y, t) ∈ L∞; thus r(t), e(t) ∈ L∞. Since, r(t) and e(t)
∈ L∞, using linear analysis (16) can be used to show that·
e(t) ∈ L∞. Since, e(t),

·
e(t) ∈ L∞, (19) can be used to show

that ·η(t) ∈ L∞. From
·
e(t),

·
η(t) ∈ L∞, it can be shown that

·
r(t) ∈ L∞. Also, (30) implies r(t) ∈ L2. Using the fact that
r(t) ∈ L2 ∩L∞ and

·
r(t) ∈ L∞, Barbalat’s lemma [29] can

be invoked to prove that

kr(t)k→ 0 as t→∞. (31)

Based on the definition of r(t), using linear analysis tech-
niques, (31) can be used to prove that

ke(t)k→ 0 as t→∞.

2) Stability of
·
θ̃ dynamics: From the equation (20), it

can be observed that as t → ∞, η(t) identifies J(t)θ̃(t) −
·
e(t) asymptotically. Thus, substituting η(t) from the ·

e(t)

dynamics into
·
θ̃(t) dynamics from (20), the

·
θ̃(t) dynamics

can be expressed as
·
θ̃ = g − ĝ − ΓJT (− ·e+ Jθ̃ − αe).

Using Assumption 4 and applying the mean value theorem,
the difference g(·)− ĝ(·) can be written as

g(z, θ, u)− g(z, θ̂, u) = Λ(z, θ̂, u)θ̃(t), (32)

and the matrix Λ(z, θ̂, u) is bounded over all time t as

Λ̄ = sup
t

°°°Λ(z, θ̂, u)°°° . (33)

The
·
θ̃(t) dynamics can be written as

·
θ̃ = (Λ− ΓJTJ)θ̃ − ΓJT (−r),
·
θ̃ = Πθ̃ + ΓY T r. (34)

The nonhomogeneous differential equation given by (34), de-
scribes a linear time varying system in θ̃(t) with a vanishing
nonhomogeneous part. Consider the homogeneous part of
(34)

·
e2 = −ΓJTJe2 + Λe2 (35)

where e2(t) ∈ R is the solution of (35). Let Φ(t, t0) be a
state transition matrix of −ΓJ(t)TJ(t). From Assumption
6, there exists a, b ∈ R+ such that

kΦ(t, t0)k ≤ ae−b(t−t0).

The solution of (35) can be written as

e2(t) = Φ(t, t0)e2(t0) +

Z t

t0

Φ(t, τ)Λ(τ)e2(τ)dτ . (36)

Using (33), the expression yields

ebt ke2(t)k ≤ aebt0 ke2(t0)k

+

Z t

t0

aΛ̄(ebτ ke2(τ)k)dτ .

Using the Gronwall-Bellman inequality [30], the following
inequality can be obtained

ke2(t)k ≤ a ke2(t0)k e−(b−aΛ̄)(t−t0). (37)

Thus, e2(t) is exponentially stable. Now, consider a state
transition matrix Φ1(t, t0) for (Λ−ΓJTJ). From (37), there
exists a1, b1 ∈ R+ such that following inequality holds

kΦ1(t, t0)k ≤ a1e
−b1(t−t0).

Thus, the solution to nonhomogeneous system (34) can be
written as

θ̃(t) = Φ1(t, t0)θ̃(t0) +

Z t

t0

Φ1(t, τ)(ΓY
T (τ)r(τ))dτ. (38)

As the nominal system (35) is exponentially stable, Lemma
9.6 of [31] can be used along with (31) to conclude that°°°θ̃(t)°°°→ 0 as t→∞.

V. CONCLUSION
In this research effort, a nonlinear observer to solve

SaMfM problem is developed. A solution is proposed for
a particular case of feature points on the object moving with
constant velocities. The approach presented in this paper does
not assume minimum number of views or feature points. The
assumption of feature points moving with constant velocity
is valid in many practical scenarios such as range and speed
estimation of vehicles moving on highways, object moving
on conveyer etc.
The proposed observer cannot be used if the object is

not moving with constant velocity because the expression
in (14) will have unknown time varying terms. Since the
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model for time varying terms (i.e. model of the velocities of
the feature points) is generally not known, the time varying
velocities will act as non-vanishing perturbations on θ̃(t)
error dynamics. Hence, it is not trivial to drive θ̃(t) error
to zero. Future efforts will focus on applying the proposed
observer to the real data and designing an observer that can
address the case of time varying feature point velocities.
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